
REPQRT DOCUMENTATIONPA

FUKf70NT *TC11TU FOR 1-)7'OMPfl51NG THE /tT7CHNICAL /

-O'PLEXlTY OF R%'QUI7EMENTS 'AMLYSU3 -
L 6. PERFORMING 01G. REPORT NUMBER *,

7. AUTI4OR(,) 8. CONTRACT OR GRANT NUMBER(.)

/ Pamela /Zave 460-OC-O)

9. PERFORMING ORGANIZATON NAME AND ADDRESS I0, PROGRAM ELEMENT. PROJECT, TASK

* ~Department of Computer Science AREA & WORK UNIT NUM R

* ~ University of Maryland PE6llO2F, 230 AZ
SCollege Park M4D 20742 T

I.CONTROLLING OFFICE NAME AND ADDRESS 12. REPORTt TE Zu

rAir Force Office of Scientific Research/NMv AUGUST k981/
SBoiling AFB DC 20332 IF NUMi4E.RD.E--P*GES

21
14. 4-NiMIT G AGENCY NAME A ADDRESS(if different from Con trolling Office) IS. SECURITY CLASS. (of this report)

DEa CL ASSI F ICA TION'DO WN GR ADIN G

Approved for public release; distribution unlimited. Lcti

16. SUPPLEMENTARY MOTES

t9. KEY WOROS (Continue on reverse side It neces sary and Identify by block number) '

20. ABSTRACT (Continu~e on reverse side if necessary and Identify by block numrber)

This paper is based on an 'operational' approach to requirements specification t

Q for embedded systems, in which a requirements specification is an executable

model of the proposed system interacting with its environment. The operational-
model is described in terms of asynchronously interacting digital processes.

V6__ complex systems be developed?-.
(CONT)

DID J All 13 1473 EDITION OF I NOV GS IS OBSOLETE UCASFE

~ / ~ i.ECURITY CLASSIFICATION OF THIS PAGE ("oen Des Entered)

SECURITY CLASSIFICATION OF THIS PAGE.(When Dale Enr'.rd)

U£M #20, CONT:

The proposed technique exploits an identification of intuitively recognizable

system functions with prccesses in the formal specification of that system,

so that its process structure can be determined during early analysis. Since

the formal language supports incremental development of a specification, one

process at a time, the requirements analyst can then elaborate the require-

ments one function at a time. Since the elaboration of each function entails

quite a number of decisions, significant decomposition of complexity is

achieved.

The technique is illustrated within the domain of process-control systems, but

its extensibility to other applications is argued. The specifications pro-

duced are good with respect to several important criteria, including

modifiability and representation of performance constralhts. ""

r

Accession For
TS C7&l

II

pi

171

UNCLASSIFIED

SECuRITY CLASSIFICATIO14 O
F

r-- PAGE(When Dole Fntored)

_____L 4 * . .

AFOSR-TR- 81 -0663

A FUNCTIONAL TECHNIQUE FOR

DECOMPOSING THE COMPLEXITY OF

REQUIREMENTS ANALYSIS*

Pamela Zave
Department of Computer Science

University of Maryland
College Park, Maryland 20742

(301) 454-4251

*This work was supported in part by the Air Force Office of Scientific

Research under Contract F49620-80-C-0001.

AtW'eved jer V blio release IUnliited

. ... 4U .~

A FUNCTIONAL TECHNIQUE FOR

DECOMPOSING THE COMPLEXITY OF

REQUIREMENTS ANALYSIS

Abstract

This paper is based on an "operational" approach to requirements

specification for embedded systems, in which a requirements specification is

an executable model of the proposed system interacting with its environment.

The operational model is described in terms of asynchronously interacting

digital processes. This paper addresses directly the question: How can such

specifications for complex systems be developed?

The proposed technique exploits an identification of intuitively

recognizable system functions with processes in the formal specification of

that system, so that its process structure can be determined during early

analysis. Since the formal language supports incremental development of a

specification, one process at a time, the requirements analyst can then

elaborate the requirements one function at a time. Since the elaboration of

each function entails quite a number of decisions, significant decomposition

of complexity is achieved.

The technique is illustrated within the domain of process-control

systems, but its extensibility to other applications is argued. The

specifications produced are good with respect to several important criteria,

including modifiability and representation of performance constraints.

AIR FOV 7E CFFTCE OF ScJFNTIFIC RESEARCH (AFSC)
T.L TO DTIC

l? tecli-!.cril rcpo t h11 been reviewed nd is
'pprovCd ror pu lic V cL o IAW AFR 190-12.

D!Stributiorl Infomid
t Chief, TechniCal Information Division2

i1

1. INTRODUCTION

Progress in software engineering has always been bottom-up: we understand

a thing in detail before we learn to generalize it, abstract from it, and

ultimately develop it by generating an abstraction first. The requirements

phase of system development is no exception. In the absence of solid, formal

techniques for specifying requirements it has been difficult to make precise

statements about how requirements can be analyzed and specifications

developed.

This paper is an outgrowth of work on specification of requirements for

"embedded" (roughly equivalent to "real-time") systems, which has yielded a

promising approach embodied in a formal specification language (these results

are su-marized in 1.1). This paper addresses directly the question: How can

such specifications for complex systems be developed? Although we base our

arguments partially on the rigors of the target notation, the happy ending is

an analysis technique which is intuitively appealing and user-oriented.

1.1. An Operational Approach to Requirements Specification for Embedded

Systems

The term "operational" is used to describe our approach because in it a

requirements specification is a working model of the proposed system

interacting with its environment (Figure 1). The approach has four major

characteristics:

(a) There is an explicit model of the environment. This model may be of

groat assistance in requirements analysis (and communication with the user),

since the purpose of any system is to support a desired mode of operation in

-- -- T- -

2

NV IONIiMT R.OFOSED SYSTEM

IL

II

PrOCC5S -Siontfl Iti VJ in+c-raC+1Oti Virh4a I vrceSS
eLViironoe-t O6et't VJ;+t I;VU CoW.pAY V

Figure 1. An operational requirements specification.

its environment. It is certainly valuable in specifying the

system/environment boundary, because assumptions and protocols on both sides

of it can be documented. Furthermore, many performance requirements are most

naturally associated with the environment model.

(b) Both the system and environment are specified in terms of

asynchronously interacting digital processes (although processes representing

nondigital environment objects, such as people, are actually digital

simulations of them). This formalism is general, abstract, and precise. It

also captures directly the concurrency and synchronization which are crucial

to embedded systems.

(c) The specification is executable. This makes it possible to debug and

validate requirements specifications by testing them, especially by giving

demonstrations to potential users. It also leads to a ready-made test bed,

3

performance simulations if necessary, a concrete standard for acceptance

testing, and the strongest possible notion of internal consistency.

(d) Computations within each process are specified using an applicative

notation, i.e. one based on side-effect-free evaluation of expressions.

Applicative languages have tremendous powers of abstraction, and applicative

programming is the epitome of the top-down style.

These features are embodied in the language PAISLey (Process-oriented,

Applicative, Interpretable Specification Language), which has been used "on

paper" to specify a wide variety of embedded system requirements. An

implementation is now being planned. The state of the project is best

summarized in [Zave 80]; [Zave & Yeh 811 contains an extended example.

1.2. A Preview

The examples contained herein all come from the domain of process-control

systems. The reason is simply that we had to start somewhere--and three

interesting examples from this class presented themselves. Pre is reason to

believe, however, that process-control systems are a particularly

representative and suggestive group. In [Zave 801 it is argued that "process

control", defined as "providing continual feedback to an unintelligent

environment", is the central concept behind all embedded systems. In other

words, process-control systems are the quintessential embedded systems!

Furthermore, the results seem quite generalizable to other application domains

(see Section 5).

For the requirements analyst starting to build a model of a proposed

system in its environment, the biggest problem is complexity. Section 2

outlines an approach to decomposing complexity which is compatible with user

views of requirements and also supported by the PAISLey notation. Since this

iL

4

leads to two levels of requirements analysis, Sections 3 and 4 deal with those

levels in turn.

2. THE BASIC APPROACH TO MANAGING COMPLEXITY

2.1. Incremental Development

The complexity of a large system must be managed by decomposing it, i.e.

breaking the mass of decisions that must be made into reasonable chunks, each

chunk being a subset of decisions which can be made in relative isolation from

the others. When such a decomposition is available, a specification of the

system can be developed incrementally, one chunk at a time; the history of the

specification will be a sequence of versions, each formed by adding an

increment to the previous version.

A useful technique for incremental development must provide a means,

firmly grounded in the specification language being used, for isolating some

decisions from others. In PAISLey, for instance, requirements decisions are

validated by testing the specification. This implies that whatever technique

we offer for incremental development in PAISLey should make it possible to

execute each increment and version at the time it is developed.

A useful technique for incremental development must also provide

guidelines for identifying appropriate increments. This is the methodological

information that enables the analyst to make effective use of his

specification tools.

2.2. A Functional Technique

Our technique for incremental development is based on the idea that a

I

5

system performs a number of functions for its environment, and that

requirements analysts and users naturally approach a system problem in terms

of these functions. We base our increments on these functions, i.e. the

PAISLey specification is developed one function at a time.

The reason that this works in PAISLey is that there exists an intuitive

classification of system functions such that functions defined according to it

have a one-to-one correspondence with processes in the PAISLey specification

of the proposed system. The classification for process-control systems is

given in Section 3. Furthermore, PAISLey is fully supportive of a mode of

incremental development in which processes are being added, as described in

Section 4.

The result is a two-step procedure for requirements analysis and

specification. In the first step, the function/process structure of the

system is determined and described informally. This step is not much different

from the way that requirements analysis is usually done, except that the

function classification improves completeness and consistency, and makes clear

which parts of the environment belong in the operational specification.

In the second step, a PAISLey specification is developed one

function/process at a time. The structure determined in the first step

provides just enough information about system interconnections so that not-

yet-specified functions can be adequately anticipated. The specification of

each function entails a great deal of decision-making, so that handling them

one at a time does decompose complexity substantially.

2.3. Processes in PAISLey

Since processes as they appear in PAISLey are central to this technique,

we survey their major features. Formally, a process consists of a state space

6

(set of all possible states) and a successor function (this "function" is of

the mathematical variety) which computes each state from its predecessor.

Thus a process goes through a sequence of process steps delineated by well-

defined process states (Figure 2). The processes in a system perform in

asynchronous parallel with each other, interacting as specified in their

respective successor functions.

A process models a perpetual, cyclic activity, and its successor function

specifies what it does during each cycle. The concept of cyclic behavior is a

very natural one for embedded systems, and also correlates well with

performance considerations. Most performance requirements seem to be

expressable as constraints on the cycle times of individual processes in a

PAISLey requirements specification.

PAISLey processes are also "distributed" processes, each one

encapsulating its own local data and able to access the data of others only

_ro
4 ,

,

______ ? lsume+io v-asivnchronwd

Figure 2. Processes in action.

7

through explicit, low-bandwidth communication. A database, for instance,

would be specified as a process whose state contains the current data and

whose successor function receives requests and honors them by accessing the

data.

2.4. Some Justifications for the Functional Technique

This technique is perhaps unusual because the first line of defense

against complexity is not abstraction (suppression of details) but partition

(describing the whole in terms of its parts). Abstraction is not used until an

individual function is being specified, at which time top-down elaboration can

and should be used to provide another level of incremental structure.

This follows directly from the observation that, at the top level, a

complex system performs a variety of functions which co-exist as equals

(rather than some being subsidiaries of others). A business system, for

instance, may fill orders, send monthly invoices, and re-order stock items

when their quantities in the inventory are low. None of these functions could

be described as a refinement of one of the others. The same philosophy is

inherent in RSL ([Bell et al. 77], [Alford 77], [Davis & Vick 77]), in the

domain of embedded systems: a top-level requirements specification in RSL

consists of a set of parallel R-nets, each describing a separate function of

the system.

Another way to see that functions must be differentiated is to consider

time. The reason that sending invoices and filling orders are separate

functions of the business system, for instance, is that they are done at

different times: invoices are sent monthly (and thus can refer to more than

one order). If an invoice were sent for each order, on the other hand,

invoicing might be considered a subfunction of filling orders. In PAISLey

8

each process has its own natural cycle time, which corresponds to the period

of the function it carries out.

3. THE FUNCTION/PROCESS STRUCTURE OF PROCESS-CONTROL SYSTEMS

3.1. The Five Types of Process-Control Functions

A process-control system performs functions for its environment--

controlling inanimate objects and providing information to animate ones--that

are discernable as soon as a general solution to the problem posed in the

statement of need is proposed. We will give a set of informal, but precise,

rules for identifying the set of external functions performed by a process-

control system, which fall into five categories.

A process-control system gets information about its environment through

sensors, and reading a sensor is the first type of process-control function.

Thus there is one "reader" process for each sensor, interacting both wi'th the

environment process modeling its sensor, and with all the system processes

which use the values of that sensor. Its cycle time is the frequency at which

the sensor must be read.

A reader process must maintain whatever data and perform whatever

processing is needed to provide useful values to the rest of the system. If

the sensor itself produces a value, for instance, then the reader process need

do no more than read it at the specified intervals and offer it to the

appropriate destinations. If the sensor just sends pulses, on the other hand,

then the reader process must maintain an internal count of them.

The second type of process-control function is responding to a perceived

condition in the environment. A "monitor" process carrying out such a

K-"--- *!

function will interact with whatever reader processes it needs to detect the

condition, and with whatever processes model or handle the recipients

(actuators, human-readable output devices, alarms, etc.) of its response. It

will store internally whatever information it needs to make history-sensitive

decisions.

Since a monitor process receives the latest sensor information, checks

for the condition, and effects its response all in one process step, its cycle

time must have as an upper bound the response-time limit for its particular

feedback loop. Thus one way to differentiate one function from another is

disparate response-time limits. Other function differentiators are having

different sensor inputs, having different effector outputs, or needing to keep

different historical information. In practice it is not difficult to tell one

function from another, because the factors that serve to define processes--

such as performance, synchronization, and encapsulated data--also serve very

well to differentiate them.

The third type of process-control function is providing information to

other systems or to human users of the system. Information can be provided

continuously (writing sampled data to a log tape), periodically (generating

daily reports), or on demand (answering queries).

An "information" process interacts with whatever sensors it needs to get

the information it deals in, and also with whatever processes request and/or

receive the information it has to give. It stores in its state all the

information it must "remember". Its cycle time is bounded by the response-

time limit for providing information, and it is differentiated from other

information functions by its time constraints, its interactions, and its data.

The fourth type of process-control function is reconfiguration, or making

the system do something different. Individual functions can be turned on or

10

off, or their parameters can be altered. A "reconfiguration" process

orchestrates such transformations by receiving the stimuli for them (usually

external requests) and translating these into instructions which update the

control information of the affected functions/processes. Reconfiguration

processes also enforce rules about who may reconfigure, what reconfigurations

are valid at given times, etc.

The fifth type of process-control function is handling an input or output

device. Inputs from an input device must be distributed to the functions for

which they are intended. Outputs to an output device must be scheduled. In

either case buffering, data conversion, etc. may be required. Device handling

is different from sensor reading in that it is not a real-time function.

These types were derived from studying three systems in this class: (a)

an industrial process-control system which adjusts coolant valves in response

to temperature fluctuations, sounds an alarm when it detects a dangerous

condition, answers queries about machine conditions from an operator, and

prints reports on production and consumption of raw materials; (b) a data

acquisition system which samples data and computes its statistical

characteristics, and can write either the raw data or the statistics to

several destinations (tape, printer, display); (c) the patient-monitoring

system whose function/process structure is given in the next section. The

types are surprisingly comprehensive, encompassing variations large and small.

3.2. Example: A Patient-Monitoring System

Figure 3 shows the functiontprocess structure of a simple patient-

monitoring system. We have given every type of function its own shape for

nodes in the graph. In PAISLey specifications many processes are replicated,

and this is indicated in process diagrams by drawing a double line around the

2I

Q0 intv-~cz HEALTH- FACTOK

7recartf MALUNCTION

7device. tizvdler

Figre 3.Thefnto/rcs srcueo aintmntrn yt

FLAUSI OL
-HEN

T

12

process. In Figure 3, for instance, there is a type of process in the

environment modeling a patient. There is a nearly identical instance of this

type of process (except for an index) for each patient in the intensive care

unit.

There is a reader process for each sensor attached to each patient

(triple lines indicate double indexing and replication). It reads its sensor

at specified intervals. It also checks the reading against a standard of

plausibility for that particular sensor, and generates a warning of sensor

malfunction if the reading fails (note that it is not responding to a

perceived condition in the environment, but to a perceived condition in the

system's interface with its environment). Otherwise, the reading is passed on

to several destinations within the system.

There is also a monitor process for each sensor of each patient. It

checks each factor for safety, and generates a warning if anything is amiss.

There is a database process (a type of information process) for each

patient. This process stores factors read from its patient, and answers

queries concerning the patient's history.

There is one reconfiguration process. Although this system undergoes no

major reconfigurations, many of its functions are controlled by parameters

which can be changed by doctors and nurses. The frequency with which a

particular sensor is read, for instance, is a changeable parameter (a value

stored in its state) of a reader process.

Finally, there are two handler processes to manage the two I/O devices of

this system, the keyboard and the screen of a full-duplex terminal. The

screen handler must arrange for the sharing of the screen among patient

histories, echoes, and warnings, in order of ascending priority and descending

length. This will entail internal buffering of patient histories, so that

II I

13

they can be interrupted on a line-by-line basis by warnings.

In Figure 3 process interactions are labeled with the type of data

transferred. This makes the function/process diagram essentially equivalent

to a "dataflow" or data-access diagram, which has long been the mainstay of

requirements analysis for all types of system ([Ross 77], [Teichroew & Hershey

771, [Miyamoto & Yeh 811). This shows that PAISLey specification techniques

need not be inferior to conventional ones for intuition and communication,

even though the PAISLey view of the proposed system has the potential for

being developed into a formal, executable, and analyzable specification at any

level of detail.

3.3. Further Comments

The process structures derived according to this technique are not

compromises or merely satisfactory solutions--they are the best process

structures we know how to invent, taking into account both logical and

performance requirements. This conclusion was reached by comparing process

structures derived according to these rules with process structures for the

same systems that were developed before the rules were formulated.

One indication of the quality of the proposed process structures is that

they seem to be easily modifiable. Adding, deleting, and modifying functions

are local operations, involving mainly the function/process itself. At most,

other processes would have to undergo minor modifications to provide output to

new destinations or accept input from new sources. In other words, if it

proves true that changes to requirements, as well as requirements, are

understood in terms of functions, then a modularization based on functions

will be modifiable as well as intuitive.

In the interest of modifiability, we should probably avoid

14

"optimizations" such as coalescing functions/processes which are very closely

coupled (such as corresponding readers and monitors in the patient-monitoring

system, each of which takes exactly one step per health factor read). A

modification that caused a monitor to get input from more than one sensor, or

caused a reader to pass its data to more than one monitor, would loosen the

coupling considerably.

The better we understand the five types of function, the more stereotyped

they will seem. It may even be possible to provide a "skeleton" specification

for a type of function, with an enumeration of the decisions to be made, and

places to specify the results of those decisions. Even the functional

structure as currently understood is a force for completeness in requirements

analysis, as it generates a list of questions the analyst must answer about

each function (see 4.1).

4. ELABORATING THE FUNCTIONS

4.1. Intra-Function Decisions

After the process structure is determined, the specification is developed

by elaborating one function/process at a time (environment processes can be

developed with their associated readers and handlers). This provides

substantial decomposition of complexity, because within the boundaries of each

function there are still a large number of decisions to be made. This will be

illustrated by enumerating some of the decisions associated with each function

of the patient-monitoring system.

Reader processes are probably the simplest of all five types in the

patient-monitoring system, because it is assumed that the sensing devices

15

attached to patients deliver continuous usable values. Nevertheless, it must

still be determined whether sensors (and their readers) can be turned off and

on, how sensor malfunction can be detected, and with what frequency each

sensor is to be read (Is the frequency fixed or variable? If fixed, is it

different for each type of sensor? If variable, is there a default?).

A monitor process checks factors and emits warnings, but does it check

each reading (or only occasional readings, or batches of them)? If it checks

each reading, does it emit a warning for each bad one (even though this could

flood the screen)? What do the warnings contain? How are dangerous

conditions detected? Does detection involve a history of the past several

readings? Does it involve variable parameters?

From the process structure we know only that the information (database)

process for each patient keeps health factors read from the patient, and

answers queries about them. Are all the factors kept? Are they associated

with timestamps? How is old information purged to keep the database of

manageable size? What are the valid queries, and what are the replies to

them?

In the patient-monitoring system there are no major reconfigurations,

only alterations of parameters. Thus in elaborating the reconfiguration

function it is only necessary to collect all the variable parameters and their

potential ranges, and decide on a convenient language in which users can

describe changes or sets of changes. The specification will be completed by

showing the act of reconfiguration, i.e. the sending of instructions from the

reconfiguration process to the other processes causing them to update their

states.

Although specification of the keyboard handler demands few new decisions,

the screen handler is another matter. How exactly is the screen shared among

mI

16

the various functions that use it? How much buffering is needed, based on

performance requirements, to keep the system running smoothly?

It is worth noting in passing that elaboration of a function may entail

the introduction of additional processes, but these new processes will be

entirely subsidiary to the functions/processes from which they came, i.e. they

will not interact with any other processes in the requirements specification.

An example would be a "timer" process, used to notify a reader process that it

was time for the next reading.

4.2. The Connections Between Processes

Despite the relative independence of functions, they must surely

interact. Although the general pattern of interaction is known from the

function/process structure, how can processes be specified and tested when

other processes with which they interact are missing? This aspect of

incremental development is supported by the structures for process interaction

in PAISLey.

In PAISLey interactions are specified within the applicative expression

specifying the successor function of a process (in the rest of this section we

are talking about mathematical functions again). An asynchronous interaction

site is first (as the expression is being elaborated) represented as a

primitive "pseudo-function". All interactions involve mutual synchronization

and data transfer between two sites.

For instance, in a case where one process must send a message to another,

the sender might use a pseudo-function

send-message: MESSAGE -- > ACKNOWLEDGMENT

to do it (this declaration says that the pseudo-function "send-message" is a

mapping from the set "MESSAGE" to the set "ACKNOWLEDGMENT"). The recipient

17

might use

receive-message: --- > MESSAGE,

which is a pseudo-function with no argument. We describe these as "pseudo-

functions" because they are mappings which get evaluated during the course of

evaluation of their containing expressions. They are not true functions,

however, because their values do not depend on their arguments--rather, their

values depend on the processes with which they interact.

In the final specification "send-message" and "receive-message" will be

defined in terms of PAISLey primitives which actually do the interacting. In

the meantime, a primitive (undefined) pseudo-function such as "receive-

message" can be evaluated during execution of the specification simply by

choosing a value at random from the set "MESSAGE", or possibly asking a user

at a terminal to supply a value.

Thus the scenario for incremental development is as follows (Figure 4):

(a) When the current version of the specification contains one process which

is a party to a particular interaction, but does not contain both parties, the

interaction site is left as a primitive pseudo-function. During execution,

its values are chosen randomly, by a user, or by default. (b) When the

increment containing the process which is the other party to the interaction

is being prepared, it can be tested in isolation by leaving all of its

interaction sites as primitive pseudo-functions, and handling them during

execution as above. (c) When the current version and the new increment are

integrated, the interactions which can now be completely specified, because

both processes are present, are specified and tested. This is done by

elaborating both interaction sites in terms of PAISLey interaction primitives.

Since interactions are symmetric at this level of abstraction, the

scenario places no restrictions whatsoever on the order in which increments

18

f~Iydef;neA

epriwiitC ivi+rad-i~n

(a) 46Le cvtv+ verion

cc) Ifl+43ra+ on an~d 4%;

Figure 4. The scenario for incremental development.

19

are developed. Perhaps more experience will reveal that certain types of

function are better developed before other types, but so far nothing

conclusive has come up. In the meantime requirements analysts can be guided

by their own judgment, without hindrance from the specification language.

5. EXTENSION TO OTHER APPLICATION DOMAINS

It seems likely that this functional viewpoint on formal requirements

will generalize to other types of system, demanding only a handful of new

function types for each new domain. In fact, several of the function types

can be used for any application, as follows:

Another way to categorize the functions is as (a) "outer" functions

(readers, handlers) which manage the interface between the system and objects

of the environment, (b) "inner" functions (monitors, information functions)

which correspond most closely to the purpose of the system, and (c)

reconfiguration functions. Outer functions and reconfigurations will be much

the same in any application domain; only the types of inner function will

vary.

The inner functions of process-control systems do have a special

property, however, which makes them so easy to separate. Each function reacts

to sensor data, but never changes it. If the state of the environment changes

because of actions of the process-control system, then that change will

eventually be reflected in different sensor values coming in.

As a result, each inner function/process is free to receive and store

whatever sensor data it needs to carry out its function, even though there is

considerable overlap between its working data and that of some other function.

Consistency is not a problem because (semantically) the data is not changed by

either function. Redundancy is not a problem because this is a requirements

20

specification, not a design--resource usage is not yet an issue. This is what

made it possible for us to concentrate analysis on functions, knowing that

whatever data was needed could be supplied without complications.

For a database system the situation will be somewhat different. A system

which maintains an internal image of an inventory, for instance, does not get

its knowledge of the inventory from sensors. Rather, it constructs its image

of the inventory from knowledge of the transactions that add or subtract

inventory items. Thus internal system functions actually change the system's

image of its environment, and data shared among functions cannot exist

redundantly without causing consistency problems.

The advantages of the process-control structure can probably be adapted

to this situation simply by encapsulating units of shared, modifiable data in

their own functions/processes (analogous to data modules in the data

abstraction literature). These processes can take the place of reader

processes in supplying unambiguous real-world information to all the other

functions in the system. Nevertheless, the need to deal with redundancy and

consistency of computations and data, at the requirements level, raises many

intriguing questions about the abstract structure of computer systems.

6. CONCLUSION

This paper has described a technique by which system requirements can be

analyzed and specified formally, starting from intuitive functions in the

initial proposal. The emphasis has been on decomposing complexity, in

response to the major problem confronting the developers of real systems.

Although these are preliminary results, and still need refinement and

experience, they suggest that we can be optimistic about finding and

exploiting regular, intelligible structure in both functional requirements and

-. .. .

a | | i

21

PAISLey specifications.

REFERENCES

[Alford 77]
Mack W. Alford, "A Requirements Engineering Methodology for Real-Time
Processing Requirements", IEEE Trans. Software Engr. SE-3, January 1977,
pp. 60-69.

[Bell et al. 77]
Thomas E. Bell, David C. Bixler, and Margaret E. Dyer, "An Extendable
Approach to Computer-Aided Software Requirements Engineering", IEEE
Trans. Software Engr. 3, January 1977, pp. 49-60.

[Davis & Vick 77]
Carl G. Davis and Charles R. Vick, "The Software Development System",
IEEE Trans. Software Engr. SE-3, January 1977, pp. 69-84.

[Miyamoto & Yeh 81]
Isao Miyamoto and Raymond T. Yeh, "A Software Requirements Analysis and
Definition Methodology for Business Data Processing", Proc. NCC, Chicago,

Ill., May 1981, pp. 571-581.

[Ross 77]
Douglas T. Ross, "Structured Analysis (SA): % Language for Communicating
Ideas", IEEE Trans. Software Engr. SE-3, January 1977, pp. 16-34.

[Teichroew & Hershey 77]
Daniel Teichroew and Ernest A. Hershey III, "PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems", IEEE Trans. Software Engr. SE-3, January 1977, pp.
41-48.

[Zave 80]
Pamela Zave, "The Operational Approach to Requirements Specification for
Embedded Systems", University of Maryland Computer Science TR-976,
December 1980.

[Zave & Yeh 81]
Pamela Zave and Raymond T. Yeh, "Executable Requirements for Embedded
Systems", Proc. Fifth International Conference on Software Engineering,
San Diego, Cal., March 1981, pp. 295-304.

